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ABSTRACT

We discuss and interpret a theory developed by Kreiss and others for
studying the suitability of boundary conditions for linear hyperbolic systems
of partial differential equations. The existing theory is extremely

technical.
The present discussion is based on the characteristic variety of the

system. The concept of characteristic variety leads to .

(1) a physical interpretation of the theory in terms of wave propagation,

and
(2) a physical and geometrical method for visualizing the algebraic

structure of the system. The great complexity of the theory is caused by 1

certain aspects of this structure.
We also point out connections between the above work and a corresponding b,

theory regarding the stability of finite difference approximations.
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SIGNIFICANCE AND EXPLANATION

This paper is concerned with boundary conditions for linear hyperbolic
systems of partial differential equations in several space dimensions. For
various reasons, it can be difficult to determine whether a given boundary
condition 1is suitable for a given system. The existing theory which deals
with this issue is quite complicated and algebraic. In the present paper we
describe how this theory can be interpreted in terms of concepts associated
with wave propagation. We also mention connections with an analogous theory

regarding the stability of finite difference approximations.
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INITIAL-BOUNDARY VALUE PROBLEMS FOR LINEAR BYPERBOLIC SYSTEMS
Robert L, Higdon*
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1. I duction

In this paper we discuss boundary conditions for limear hyperbolic
partial differential equations in several space dimensions. Our goal is to
provide some interpretations and explanations of a theory developed by
Kreiss and others (e.g.. [10),(14]1,[15),[20),(21]) for determining whether a
given set of conditions is suitable for a given equation. The theory is of
fundamental importance. However, it is extremely complicated, and its
physical interpretation is not immediately spparent. Ia the present section
we describe the context of the theory and outline the interpretations which
we will give regarding it. At the end of the section we point out some
relationships between this theory and the study of finite difference
approximations.

Examples of hyperbolic equations include the Euler equations of gas
dynamics, the shallow water equations, Maxwell’s equations, equations of
magnetobydrodynamics, and the classical wave equation. Except for the wave
equation, these examples are systems of first-order equations. The first
threé cases will be discussed in Section 4,

The theory to be discussed here deals with linear first-order systems.
Equations of higher order can be reduced to first~order systems by standard
techniques (e.g.., John [9], Taylor [26]). Of the above examples, Maxwell's
equations and the wave equation are linear, The theory is applicable to
linearized versions of the others.

The unknown, dependent variables in the problems of interest are
functions of space and time, e.g., u = u(x,t) where x e R® . The

spatial variable x is typically confined to a subdomain of R® . For
example, a flvid may flow in a region which is bounded by a solid wall., In
. other problems the spatial domsin of interest may be bounded, at lesst in

part, by an open, artificial boundary. These boundaries are sometimes
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introduced in order to limit the extent of a problem so that a numerical

computation of the solution can be made feasible. This is the case with
limited—area problems in oceanography and meteorology. Another such
situation is the modeling of a fluid flow in an exterior domain,

In order to determine a unique solution to the problem, it is necessary
to specify values of the solution at some initial time, and it is generally
necessary also to impose conditions on the solution at the boundary. The
problem thus becomes an initial-boundary value problem (IBVP). 1In some
cases the correct boundary conditions can be found easily from physical
considerations. At & solid wall which bounds the flow of a fluid, for
example, one sets the normal component of the fluid velocity equal to zero
(if effects of viscosity are to be considered, the tangential component must
also vanish). In other situations the choice of boundary conditions is not
as obvious. This is the case with artificial boundaries, which do not
correspond to anything physical.

In general, it is necessary to be careful when choosing boundary
conditions for a hyperbolic system. This can be seen most easily in the
case of first-order systems in one space dimension, which we will discuss in
Section 2, There we will show that various portions of the solution
represent traveling waves. It will be apparent that any acceptable boundary

condition must prescribe the behavior of the waves which are coming into the ‘ 3

spatial domain, but is must not affect the waves which are leaving.

Examples of suitable boundary conditions include reflection conditions,

which describe incoming waves in terms of outgoing waves.
In several space dimensions the situation is more complicated than in

one dimension. In this case, it is not nearly as easy to identify

'’incoming’’ and '‘outgoing’’ components of the solution. There may also be
waves which move tangent to the boundary, and it may not be clear what a
boundary condition should say about them. These difficulties are among the
principal topics to be discussed in the present paper.

Because of the above problems, it may be difficult to determine whether

8 given boundary condition is suitable for a given equation in several

dimensions. One approach to this guestion is given by the ’'’‘energy method’’
(e.g., Friedrichs (4], Courant and Hilbert, vol.II [3]). This method gives
2




criteria which are sufficient for a boundary condition to yield a well-posed
problem, i.e., a problem which admits s unique solution depending
continuously on the prescribed data. (See Section 3.1 for a more precise
definition of ’‘well-posed’’.) The criteria are not necessary; if the
method fails to show that a boundary condition is acceptable, this may be
due either to s defect in the condition or a defect in the method.

An alternate approach yielding more precise information (’'’normal mode
analysis’’) has therefore been developed. The theory includes work by
Kreiss [10), Sakamoto [23), Rauch [21], Ralston [20], Majda and Osher [14],
and Michelson [15] . The theory gives criteria which are essentially
necessary and sufficient for a boundary condition to yield a well-posed
problenm.

The theory is extremely complicated and algebraic; its physical
meaning tends to get buried by lengthy and detasiled studies of various
matrices. The principal purpose of the present paper is to examine this
work from the viewpoint of wave propagation. We will show that to a great
extent the theory bas physical effects that one would expect from the

discussion of incoming and outgoing waves given above. The concept of group

velocity plays a major role in the discussion. The great complexity of the
theory is due mainly to the Fourier components of the solution which
correspond to waves traveling tangent to the boundary.

We now outline the contents of this paper. In Section 2 we review the
standard treatment of systems in ome space dimension. In Section 3 we
describe the motivation which is usually given for the multi-dimensional
theory. Section 3 concludes with a literature survey.

The interpretations to be given here make extensive use of the y
structure of the characteristic variety of the system, i.e., the
high-frequency part of the '’'dispersion’’ relation. In Section 4 we
describe this structure for some examples, and we point out that these
special cases model crucial features of more general systems. For the sake
of definiteness and clarity, the discussion in the remaining sections is {
given in terms of the examples. In Proposition 4.2 (Section 4.4) we
describe a process by which incoming and outgoing modes are labelled
slgebraically in the theory of well-posedness.

3
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In Section 5 we give some interpretations of the '‘uniform Kreiss
condition'' (U.K.C.), the algebraic criterion which characterizes admissible

boundary conditions. This criterion is used to solve for '’incoming’’

components in terms of ‘’‘outgoing’' components and boundary data. Im this
section, we also consider some weaker forms of well-posedness which are
encountered when the U.K.C. is not quite satisfied. In these cases there
are certain uniformities which do not hold as the frequencies of the Fourier
components of the solution tend to infimity, so that certain reflection
coefficients may tend to infinity.

In Section 6 we use the framework of Sections 4 and § to discuss some
of the main ideas in the proofs by Kreiss and others which show
well-posedness of the initial-boundary value problem.

Sections 4,5, and 6 form the core of this paper. The reader who is in
8 hurry may find it worthwhile to skim lightly over Section 2 and Sectionm
3.2,

The theory discussed here is closely related to a theory which deals
with the stability of finite difference approximations to initial-boundary
value problems. The stability theory includes work by Osher [18],[19],
Gustafsson, Kreiss, and Sundstrom [5], and Michelson {16]. Trefethen
[27],1(29] bas recently studied this work from the viewpoint of wave
propagation and hss reached some conclusions which are analogons to some
ideas expressed in the present paper. From time to time we will point out

some similarities between the well-posedness theory and the stability

theory.




2. Systems in one space dimensjon

We now review the situation for systems in onme space dimension. 1In
this case the problem of finding suitable boundary conditions is fairly
straightforward.

We consider the system
(2.1) uy = Aoy + Cu ,

where u(x,t) is a vector having n components, and A(x,t) and C(x,t)
sre n x n matrices. For simplicity, we assume that (2.1) is defined for
x>0 and t > 0, If a system is defined on a spatial domain with two
boundaries, e.g., a { x {( b , then each boundary can be treated separately
in the manner to be described delow,

The system (2.1) is assumed to be hyperbolic, i.e., A has real
eigenvalues and a complete set of real eigenvectors., This assumption
enables one to simplify the form of the system. It implies that there
exists s nonsingular mstrix Q such that Q 1lAQ = diag {Ay,...2,).

The system (2.1) can then be written as

(@a), = (@la@)(@lu), + (@7tc + a7l - a7 lace ),

or
A
(2-2) vt = * vx + Dv )

where v = Q 1g .,
For the sake of simplicity, we first consider the case D =0 . Under
this assumption each equation in (2.2) has the form
7SN 7
at i ax
and is an ordinary differential equation for vj along the
characteristic ourves defined by dx/dt = -lj. (See Figure 2.1) The

components vy are constant slong the corresponding characteristic

5




curves and can thus be regarded as traveling waves which move at the

characteristic velocities dx/dt = -lj.

|ZZ2N\N

A, <0 A. >0
j h|

Figure 2.1, Characteristics for (2,2),

Initial values for the ordinary differential equations for v; are
provided by the values of vj at t =0 and also, when lj <0,
by values of \f at the boundary x =0 . It is therefore necessary to

prescribe an initial condition
v(x,0) = f(x) , x>0,

where f is a given function, together with a boundary condition which
defines values for the \f corresponding to negative lj , iee.,

the incoming components of v . It is not permissible to prescribe values
for outgoing components at x = 0; otherwise, the boundary conditions
could contradict the effect of the initial condition and thereby make it
impossible for a solution to exist. The boundary conditions must therefore

fit the general form

(2.3)  vI0,t) = sviT(o,¢) + g(t) , £ >0,

I

where v and vII

are vectors consisting of the inmcoming snd
outgoing components, respectively. Here g is a given function, and S is
8 rectangular matrix of appropriate dimensions which governs reflections at
the boundary.

¥hen D # 0 , the equations in (2.2) are coupled together. In this
case the existence of the solution can be shown via an iteration of Picard
6
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type. See, eo.g., Courant and Hilbert [3]). The boundary conditions must
satisfy tho same criteria as before; it is necessary to prescribe values
for incoming components, and it is not permissible to prescribe values for
outgoing components. The identification of the incoming and outgoing
components depends only on the leading order part of the system, i.e., is
independent of D .

It is often of interest to kmow that the solotion depends continuously
on the prescribed data f and g. In this case the continuvous dependence
follows from the fact that solutioms to ordinary differential equations are
continuous functions of their initial data. (Also see (3.5) and the

associated discussion)
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3. Motjvatjon for the multj-dimensional theory

We now begin the discussion of problems in seversl space dimensions. :
In this case it is gemerally not possible to construct and snalyze the **
solution by using characteristic curves., As noted in the Introduction,
asdditional problems may be caused by the possibility of waves moving tangent
to the boundary. Ome can therefore expect this case to be more complicated
than the previous one,

In the present section we describe the motivation which is usually

given for the approach developed by Kreiss and others for studying the
multi-dimensional case. In Section 3.1 we make some preliminary remarks,
and in Section 3.2 we derive a condition which is necessary for the problem
to be well-posed. In Section 3.3 we state a stronger condition which can be
shown to be sufficient. The effects of the stronger assumptions will be
discussed in later sections, mainly Section 5. The proof of sufficiency is
the main source of difficulty in the theory and bears little resemblance to
the derivation of the necessary condition, In Section 3.4 we survey some of

the literature which deals with the subject.

3.1 Preliminaries

A fairly general form for linear hyperbolic systems is

(S~e the examples in Section 4.) We consider this system for t > 0 , and
for reasons given below we assume that the spatial domain is defined by
x>0 and y ¢ R®, where m > 1. In (3.1) u(x,y,t) and F(x,y,t)

are vectors having n components, and A.Bj. and C are D xn

matrices which we assume to be smooth functions of =x,y, snd t.

In the theory which has been developed, the system is assumed to be
either strictly hyperbolic or symmetric hyperbolic. In the former case the

matrices oA + Z uij have real distinct eigenvalues for all real o, 3
5, «o. @, for which lol + lol # 0 . In the latter case A and the ' ;

ws- - S
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Bj are hermitian., (See Section 4.1 regarding ’'’'symmetrizable’’ systems.)

The spatial domain [0,o) x R® has been chosen for the sake of N
simplicity. If one is considering a system defined on a spatial region
which does not have this form but still has a smooth boundary, then one can
localize the problem with a partition of unity and then map each boundary
portion into the boundary of the half-space [0,) x R® . In the new
coordinates the problem will have the form given above.

Since (3.1) is hyperbolic, the matrix A can be assumed to be diagonal
with real eigenvalues; otherwise one can find a similarity transformation
which makes it diagonal and then adopt the corresponding change of dependent
variable. In much of the theory A is also assumed monsingular, i.e., the
boundary x = 0 is moncharacteristic. (c¢cf. Section 4.3) Unless otherwise
stated, we will assume that this is the case and that the elements of A
are arranged so that A has the form

Al

(3.2) A= Al
where Al ¢ 0 ana Al > 0 .

In analogy with the one—-dimensional case, we prescribe an initial

condition
(3.3) u(x,y,0) = f(x,y) ,

where f 1is a given function, together with a boundary condition of the
form

3.4 odo,5.0 = s ol0,5.0 + 55,0 .

Here g 1is given function, S is a rectangular matrix, and

u = ((nI)T. IDTT | e components of ol and oI correspond to

the blocks Al ana All » respectively, in (3.2), Some remarks
about the form of (3.4) are given at the end of Section 5.1,
The problem at hand is to determine whether the boundary condition
(3.4) is approprieste for the system (3.1). In the one-dimensional case the
9
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answer is obvious, but in the present case it may be necessary to place some

restrictions on the matrix S . The effect of the theory being described
here is to identify restrictions which are necessary and sufficient for the
initial-boundary value problem to be well-posed.

By ’''well-posed’’ we mean that for arbitrary F,f,g in sujtable
function spaces, the problem (3.1), (3.3), (3.4) admits s unique solution,
and, furthermore, it is possible to estimate the solution in terms of
F,f,g. The latter condition is equivalent to the continuous dependence of
the solution on the prescribed data. A typical estimate (’'’energy

estimate’’) has the form

asy  Melocto,er + Mallggeo e + Hated il
SRy + Mgl o oy + EH e ),

where K is independent of u,f,F, and g (e.g., Majda and Osher [14],
Rauch [21]).  denotes the spatial domain x > 0 , and the norms are
weighted L2 norms or Sobolev norms on the regions indicated by the

subscripts. See also the estimate (5.25).

3.2. A necessary condition for well-posedness, I

We now develop the necessary condition which was mentioned in the
introduction to Section 3. This condition is based on certain families of
exponential solutions of the differential equation which cannot possibly
satisfy the energy estimate (3.5), or any similar estimate, If these
functions also satisfy the boundary conditions, then they are solutions of
the initial-boundary value problem (IBVP), and the problem must be
ill1-posed. It is therefore necessary to guarantee that the boundary
conditions exclude these functions.

The necessary condition is similar to the Godunov-Ryabenkii criterion
for the stability of finite difference approximations. (See, eo.g., [51,([22],
or [28]).

In order to obtain the special soluntions, we assume that C =0 , A,
Bj and S are constant, and F =g =0 . The IBVP (3.1), (3.3), (3.4)

10 . {
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.

is then

du
(a) nt-Anx+ZBj-a—y-j , x>0, yeR* , t>0
(3.6) (b) n(IQYpO) = f(an)

(c) of = sull , x=0

The solutions of interest (’’normal modes’') are elementary waves

having the form
3.7 u = §(x) oi®w'y *+ st

where w ¢ B® and s is complex with Re s > 0 . Modes of this
type are associated with Laplace ard Fourier transforms (see Section 4), bdut
we will not need to use these transforms at the present time. In fact,
their use would introduce unnecessary complications.

If det A# 0, (3.6)(a) can be written as

(3.8) v, = Al(w, - [ B, 32!

When (3.7) is substituted into (3.8) , the result is an ordimary
differential equation for the amplitude function:

) m

(3.9)  ¢'(0) =AYsI- T iwB) @
i
i=1
= u(“p‘)‘

The solutions of (3.9) will be discussed extensively later. For the moment
it suffices to say that there are certain solutions which decay
exponentially as x + + ® and others which grow exponentially. We also note

that for any solution u of the form (3.7), the related functions
(3.10) v (x,y,t) = é(ax) elawey + ast

are also solutions of (3.6)(a), for all real a.

11




A necessary condition for well-posedness is implied by the following

Proposition:

Proposjition 3,1, Suppose that for some s with Re s ) 0 and some
© ¢ B® , there is a function u of the form (3.7) which satisfies
the following:

(a) ¢+#40, and & decays exponentially as x + +» ; and

(b) u satisfies the boundary condition (3.6)(c), 1.e.,

(3.11) ol = sull, for x=0.
The IBVP (3.1), (3.3), (3.4) must then be ill-posed.

Proof, (3.11) implies that the corresponding wu,
sstisfy the boundary condition, since (3.11) is equivalent to 10 =
sé11(0). The u, are thus solutions of the IBVP (3.6), which
is a special case of (3.1), (3.3), (3.4). We also note that the ®u

slso

a
have finite porm with respect to x .

We now show that the family (na: a > 0} violates the energy
estimate (3.5). As @ + +o , the solutions v, 8rowv at
arbitrarily high exponential rates in t , since Re s > 0 . Equivalently,
the left-hand ride of (3.5) is an exponentiaslly increasing function of a.
This is not the case for the right-hand side. In this case F and g are

zero, and the initial values are
f,(x.y) = @(ax) elawey

Sobolev norms with respect to x and y introduce derivatives which cause
polynomial growth in a , dbut this is the most that can happen on the
right-hand side. By taking a sufficiently large, we can therefore
conclude that no constant K in (3.5) is adequate. The definition of
well-posedness given earlier is thus violated.

Hersh (6] has pointed out that the failure of the energy estimate
implies that existence and/or uniqueness must also fail to hold. BHis

12
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argument is based on the closed graph theorem,

A crucial part of the above argument is the fact that F and g are
zero. If F and g are large whenever the solution is large, then there
is no problem. But in the case considered here, it is possible for large
solutions to appear without sufficient provocation from the prescribed data.

One may object that the u, do not have finite L2 norms or
Sobolev norms with respect to y and therefore would not have to satisfy
(3.5). This problem can be remedied by truncating the uw, . Let ¥
be a smooth function of y which is equal to 1 for |y| £ 1 and is equal

to zero for lyl ) 2 , and consider the functions
y y L]
Uga(xyat) = ySIug = w(—i)o(ax)ei“"’ y + ast

for A > 0 . These functions satisfy an inhomogeneous differential
equation and homogeneous boundary conditions. The failure of the emergy

estimate is shown by letting O ,A> 4+ ., We omit the details.

The ideas in the above proof, aside from the truncation in y , have
been credited to Agmon. (cf. Kreiss [10), Agmon [1])
The function @ of Proposition 3.1 is often said to be the solution

of an eigenvalue problem with eigenvalue s, since it satisfies

daé
s = b (Jiw;B;)4

(3.12) o) = séll(0)
é:c L2(0,°)

The third condition may be regarded as a boundary condition at infinity.

Proposition 3.1 can then be stated in the following manner:

Propogition 3,1’ . The IBVP (3.1), (3.3), (3.4) is ill-posed if, for
some w ¢ R?, the problem (3.12) has an eigenvalue s with Re s > O,

We will later formulate this Proposition as an algebraic criterion
which is necessary for well-posedness, but we must first characterize the

solutions of the system (3.9).

13




The basic theory of ordinary differential equations irplies that (3.9)

has n 1linearly independent solutions ‘1""‘n which span the
set of all solutions of (3.9). The 0j can be taken to have the form

(3.13)(a) $(x) = “F w

where K is an eigenvalune of M(w,s) and w is a corresponding

eigenvector, or
(3.13)(b) &(x) = TP(x) ,

where P is a polynomial having vector coefficients. The latter form
arises when K is associated with a pontrivial Jordan block. The degree of
P is less than the algebraic multiplicity of x , and P(0) is a
generalized eigenvector. Ve will not denote explicitly the dependence of
d, v, and P on s and @ .

The ‘j give rise to exponential solutions of the partial differential
equation (3.6)(a) via the relation (3.7), u = $(x)el®Y * 3t These modes
will be denoted by

uj{x.y.t) - ‘j(x)ei“'y + st
(3.14) eKZ + ey + st
or e<% * iy + st P(x)

We are interested in solutions of this type which have finite L2 norms

or Sobolev norms with respect to x on the interval 0 ( x ( = ,
Information adbout these modes is giver by the following Proposition due to
Hersh [6]. Anmalogous properties of finite difference equations are given in

Lemmas 5.1 and 5.2 of Gustafsson, KEreiss, and Sundstrom [S5).

Proposition 3,2, Let £ denote the number of negative eigenvalues of
A. If Re s >0, then the matriz MN(e,s) = A"1(sI - ) iuij)

14




(see (3.9)) has 2 eigenvalues K with negative real part and n - £

eigenvalues with positive real part.

Proof, We first note that there are no purely imaginary eigenvalues
when Re s > 0; if K = jg were an eigenvalue, then

= A 1(s1 -
iow = A (sl Z iijJ)v ’

for some vector w # 0, and therefore

(icA + Ziuij)v = sw .,

But s would then have to be purely imaginary, since the system is
byperbolic.

Let s =y + if. We are interested in the signs of the real parts of
the eigenvalues of M(w,s) on the domain 0 > 0, £ e R, w ¢ R®,
The eigenvalues are continuous functions of 0,%{, and o, so the
resl part of each eigenvalue must have a constant sign on the domain;
otherwise there would be sets on which Re K=0 for some K, We can
therefore count the signs at any point which may be convenient, If n =1,
E=0, and w = 0, then M = A"l. In this case the claimed counting

is correct, and the Proposition follows,

.The Proposition implies that £ of the functions ‘j in (3.13)
bave finite norm on the interval 0 ( x ( = , The same is true of the

solutions ug in (3.14), for fixed y and t. Arrange indices so that

these functions are ¢1....02 and uy,... uy.

We can now formulate an algebraic condition which is necessary for
well-posedness. According to Proposition 3.1, it is necessary to prevent
certain solutions u of (3.6)(a) from satisfying the homogeneous boundary

condition (3.6)(c). The solutions of concern are linesr combinations of

Ugseee B, snd the corresponding ¢'s are linear combinations of
‘10..- 0£o
The bovndary condition (3.6)(c) can be written as

15
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oI
(1, -8 =0, for x=0
o II

For the solutions of interest this condition has the form
(3.15) (I, -S)l{ug,... 5yl ¢ =0, for x =0,
where ¢- is an £ - vector whose components are the coefficients in the
linear combination. The representation u; = 01(3)01"'y + st (500 (3.14))
implies that (3.15) is equivalent to
(3.16) [ID -s][61(°)loou ‘2(0)] [ ] = 0

The linear independence of ‘1.... ‘1 implies that a limnear

combination of u4,... L) is zero if and only if ¢ = 0. We therefore

want (3.16) to have no nonzero solutions ¢, which means that the matrix

-,

(3.17) N(w,s) = [I,-311,(0),...4,(0)]

must be nonsingular,

We should note that N(w,s) is square; the number of rows in the
boundary condition (3.6)(c) is equal to the number of negative eigenvalues
of A, which is £ . (See (3.2),(3.4), and Proposition 3.2.) We also note
that N really does depend on « and s; according to (3.13) and the
sssociated explanation, the vectors ‘1(0)....02(0) axe eigenvectors
and generalized eigenvectors of M(w,s). They correspond to the
eigenvalues which have negative real part. For an example of N(w,s), see

(5.23).

From the above discession we can conclude the following:

Proposition 3.3, A necessary condition for well-posedness is that

(3.18) det N(w,s) # 0




- m—

N

for 11 w ¢ B® and all complex s with Re s ) 0.

3.3. The sufficjent conditjon

We now introduce a stronger version of (3.18) which can be shown to be
sufficient for well-posedness. The stronger condition is a uniform version
of (3.18), and in at least many cases, it amounts to a requirement that
(3.18) hold for Re s ) 0, rather than just for Re s > 0. The effects of
the stronger assumptions will be discussed in later sections.

In order to state the sufficient conditon, it will be necessary to
introduce some normalizations. For any (e,s) with Re s > 0, choose a
basis for the L - dimensional vector space of decaying solutions of the
system 0, = M(w,3)® (i.e.,(3.9)), and from this basis produce a
new basis which is orthonormsl at x = 0., For example, one could choose the
particular functions 01.... ‘2 discussed earlier (see (3.13) and
the -discussion after Proposition 3.2) and then perform the Gram - Schmidt
orthogonalization process on the initisl values ‘1(0),... 02(0).

Ve have noted that these initial values are eigenvectors and generalized
ei;envoctofs of M(w,s). For reasons given below, we will not limit
attention to the particular basis ‘1....‘2 .

‘Denote the orthonormal initial values by wl(m,s)....wz(u.s):

and let

(3.15) Nlw,s) = [L,-S10y0,8),...0; (w,8)]
(c£.(3.17)). The sufficient condition is the following:
Upiform Kxeiss Condition (U,K,C.), There exists & > 0 such that
(3.20) ldet N(w,s)| 2 8
for 811 @ € R® and a1l complex s with Re s ) 0.
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This is essentially the formulation used by Majda and Osher {14] and
Michelson [15]. An aslternate formulation will be discussed later. We make

several comments regarding the form of (3.20):

(1) The earlier, necessary condition (3.18) did not involve any
normalization of the vectors 01(0).... ‘40), but some sort of
pormalization is necessary if the vaiform condition (3.,20) is to hold.
Otherwise, we could replace v with e Yy, with ¢ small.

(2) The U.K.C. does not depend on the choice of orthonormal basis
wl(u.s)...;wz(»,s). If Jl"" J& is another such basis, thenm

(i, e bgd = Diga..g)Q,

where Q is sn 2 x £ matrix. It is easy to check that Q is ovmitary.
Then,

laet ([1,-811V, ... 41 | = det((I,-S1(¥y,...Ypl@) |
= Jdet(NQ)} = ldet N| - ldet al
= |det NI

(3) It would suffice to impose (3.20) merely for {wl2 + 1s12 =1
{and Re s ) 0); in each direction in the (w,s) space it is possible
to choose vectors wj(u.s) which are homogeneous of degree zero in
(w,8). For example, this can be accomplished by observing that
M(w,s) = A 1(s1 - Ziuij) is homogeneous of degree ome and that solutions
of 6, = M} can be written in terms of -solutions for lwl? + 1512 = 1
by scaling x appropriately.

(4) The UKC applies to systems which have variable coefficients. For
such systems the matrix M(w,s) 1is also a function of (x,y,t). In this
case the above analysis is applied to the constant-coefficient problems
obtained by freezing coefficients at boundary points (0,y,t), and the UKC is
then required to hold uniformly in (y,t). The calculus of
psoudo-differential operators is used extensively in the treatment of
variable—~coefficient problems. (See Section 6).

We now discuss an alternate formulation of the U.K.C. The earlier
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condition (3.18), det N(w,s) # O for Re s > 0, is equivalent to
requiring det N(w,s) # 0 for Re s > 0. This follows casily from

a8 change-of-basis argument which resembles that of comment (2) above. We

nov show that in many cases the U.K.C. is equivalent to requiring
det i(u.s) #0 for Re s ) 0, not just for Re s > 0. The U.K.C. is often
described in this manner (e.g., in [5]),[10]).

The equivalence will follow from some continuity arguments. In at
least many cases (soe Section 6), it is possible to choose the basis vectors
l1’1(«:.3)....‘1’31,(m.s) so that they are piecewise continuous functions of (w,s).
The continuity makes it possible to extend the definition of i(u.s) to
Re s = 0. VWe note that the description of E(u.s) given earlier is not valid
in this case; when Re s = 0 the system ‘x = M does not, in general,
bave £ 1linearly independent solutions which tend to zero as x =+ + @

(cf. Proposition 3.2 and Section 4.3). The equivalence mentioned above now
follows from the piecewise continuity of i(a.s) and the compactness
of the sot ((w,s): lwl?2 + I512 =1, Re s ) 0).

3.4 A survey of some of the literature on the subject,

Hersh [6] studied first-order hyperbolic systems which have constant
coefficients and which are defined on a half-space. He showed existence and
uniqueness of solutions subject to the condition (3.18). Solutions were
consirncted via Fourier transforms and Laplace transforms.

Kreiss [10] used an approach which is applicable to
variable-coefficient problems defined on arbitrary spatial domains having
smooth boundaries. Here the main idea is to construct a ’'’'symmetrizer’’, a
pseudo-differential operator which enables one to obtain the necessary
energy ostimate. This is the approach which will be discussed later in this
paper, The construction is based on the condition (3.20). Kreiss assumed
that the system is strictly hyperbolic and that the matrix A in (3.1) is 1
nonsingular, i.e., the boundary x = 0 is noncharacteristic. He also

assumed that the initial data are zero.

Sakamoto [23] obtained analogous results for scalar hyperbolic ¥
equations of higher order. . h
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Ralston [20) provided an alternate method for treating some techmical
points in Kreiss’ construction.  His work extends Kreiss’ results to systems

having complex coefficients.

Rauch {21] considered the case of monzero initial data and proved
regularity estimates for the solution.

Majda and Osher [14] generalized the theory to the case where the
boundary is ’''uvniformly characteristic’’. This means that the matrix A =
A(x,y,t) in (3.1) has constant rank ( n for all (x,y,t) in a neighborhood
of the boundary x = 0 . They assumed that the system is symmotrizable
hyperbolic.

Michelson [15] used a theory of anslytic matrices to simplify some
aspects of the uniformly characteristic case.

Strikwerds [25] studied ’'‘incompletely parabolic’’ systems from s point
of view which is similar to that of Kreiss, et.al,

Sarason and Smoller [24] used methods of geometrical optics to study
the behavior of hyperbolic systems in spatial regions with corners. They
considered the case of rays which are not tangent to the boundary.

Majda [13]) used Kreiss symmetrizers to study the linearized stability
of multi-dimensional shock fronmts.

The well-posedness theory discussed here is closely related to a theory
for the stability of finite difference approximations to initial-bounndary
valng problems for hyperbolic systems. Gustafsson, Kreiss, and Sundstrom
{5] showed that a condition analogous to the U.K.C. implies the stability of
difference approximations in one space dimension. Osher [18], [19] had

earlier used different techniques to obtsin stability results for s
restricted class of methods. Michelson [16] has obtained results for
dissipative approximations in several dimensions when the boundary is
noncharscteristic and the initial data are zero. A more extensive survey of

the literature is given by Trefethen [27]).
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4. Charscterjstic varietv; exsmples.

In this section we discuss various matters related to the a#
''charscteristic variety’’ of the system (3.1). The discussion will give

useful informstion about the nature of the well-posedness theory and its

physical interpretation.

Before we proceed, we must perform some transformations on the IBVP
(3.1), (3.3), (3.4). Through & process described st the beginming of
Section 5.2, the effects of the initial data can be incorporated into the
forcing texm F. We thus assume £ = 0. We also assume that C = 0 and
that the coefficients are constant. (See the comments after (4.8)) We now
apply s Fourier transform in the tangent variable y, with dual variable
iw, and a Laplace transform in ¢, with dual variable s = n + if (n > 0).
The latter transform is defined by

® st
(4.1) Lw(s) = [ e 3tw(t) dt.
°
Under the above transformations the system (3.1) becomes
su(x,w,s3) = Aux + jzl iuijn + F(x.w.s)
Here we used the fact f = 0, The IBVP can then be written as

(a) ;x = M(w,s)u - A”1P , x>0

(4.2)
(®) &1(0,0,8) = 58T + glo,s),
where
(4-3) “(U.‘) = A-l(‘l - z ib)ij)
J

It may not be apparent why one would use transforms in (y,t) rather
than, for example, in (x,y). This question will be discussed at the
beginning of Section 4.3.
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For later reference, we show that the use of Laplace and Fourier
transforms enables one to express solutions of (3.1) as superpositions of
k elementary wave-like solutions. The Laplace transform (4.1) of a function

w 1is the same as the Fourier transform of the function

e Mty(t) , t >0

w,(t) =
0 .t €0

The factor e "' is inserted to ensure integrability. The
application of an inverse Fourier transform shows that w(t) is a
superposition of modes eNtelft = o3, where n is fized. :
The Fourier transform in y introduces an additional oscillatory factor i
exp(iw‘y). Furthermore, the solutions of the inhomogeneous system
(4.2)(a) are based upon factors exp(<x) for various eigenvalues K of

M(w,s). (See Section 5.2) The solutions of the partial differential

gt

equation are thus built up from modes

(4.4) KX+ oty st

These modes will be discussed extensively later.

The pormal modes (4.4) were also used in the discussion of the
necessary condition in Section 3. However, we deliberately avoided
superimposing such modes in order to avoid nnnecessary complications.

We now describe the main topics to be discussed in the present section. |

Definjtion . The characteristic variety of the system (3.1) is the set
of all o ¢IR, w sIR®, £ ¢IR such that

(4.5)  det[EI - (oA + Z ijj)] =0
J
The matrix function oA + X uij is commonly called the

'*principal symbol’’ of (3.1). Some remarks in Section 3.1 imply that if
the system is hyperbolic, then the symbol has real eigenvalues and a
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complete set of eigenvectors. In general, A and the Bj may depend

on (x,y,t), and thus the charscteristic variety may also depend on (x,y,t).

A typical relation (4.5) is graphed in Figure 4.1 in Section 4.2.

There sre a couple of reasons why the relation (4.5) is relevant to the
study of well-posedness. First, a topic of major interest in the theory is
the structure of the matrix M(w,s) in (4.3). For reasons to be discussed
later, a particularly important topic is the behavior of M(w,s) as
Re s * 0. This is already suggested by the manner in which the necessary
condition (3.18) is strengthened by the U.K.C. (3.20)., For the moment let
us consider the limiting case M(w,if). If ic 1is s purely imaginary »

eigenvalue and z 1is a corresponding eigenvector, then

(4.6)(a) oz = A1(ig - § 108;)z,
or

(4.6)(b) &z = (oA + ) ijj)z.

The point (o,w,f) must satisfy the relation (4.5). The characteristic
variety will thus enable one to visualize the behavior of M(w,s) as

Re s * 0. The relations (4.6) may be compared with the conclusions of

Proposition 3.2.

A second reason for studying the characteristic variety is that it is
related to the physical phenomenon of wave propagation, Suppose that (3.1)
has constant coefficients and that C =0 and F = 0, so that (3.1) is

(4.7) A, + T B2 |
. o = '} — !

t X jayj ‘
If a plane wave solution {

(4.8) 2 ellox + 'y +Et)

——

is inserted into (4.7), where 2z 1is s vector, the result is (4.6)(b), The

characteristic variety thus describes the set of all wave numbers and

frequencies of plane wave solutions of (4.7).
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This analysis is approximately valid in more general cases if the

frequencies are sufficiently large. VWhen C ¢ O, one obtains the equation

£z = (oA + Z »ij): + Cz

instead of (4.6)(b), but the effects of C are small for large o,0,5.
Also, in the case of variable coefficients the coefficients appear nearly
constant to s wave whose frequencies sre sufficiently high.

One may object that the mode (4.8) does not satisfy the homogeneous
initial condition used to obtain (4.2)(a). This issue is settled by the

discussion appearing in Sectiom 5.2.

In the theory of well-posedness one actually encounters the modes (4.4)
rather than the modes (4.8). However, the relations between the two cases
are of major interest and will be discussed extensively later. (See
Proposition 4.2 and Section 5.3)

We now outline the contents of the remainder of this section. In
Section 4.1 we give some examples of first—~order hyperbolic systems. In
Section 4,2 we discuss the structure of the characteristic variety for
systems like those mentioned in Section 4.1. In Section 4.3 we use the
characteristic variety to describe some properties of M(w,if), and we

point out that the examples model some crucial aspects of the dbehavior of

more general systems. A major point of interest in Sections 4.2 and 4.3 is
the problem of identifying the incoming and outgoing portions of the
solution. In Section 4.4 we discuss the manner in which these portions are
labelled algebraically by certain processes appearing in the theory of
well-posedness. Some of the content of Sections 4.2 and 4.3 has already
appeared in [7].

4.1 Ezsmples of first-order hyperbolic svstems

In this sub-~soection we list the shallow water equations, the ‘
tvo-dimensional isentropic Euler equations of gas dynamics, and Maxwell’s r
equations. _ !

The shallow water equatjons can be written in the form !
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llt+nux+vuy+0x=o

(4.9) Ve Y uvy +ouvy 4 0y = 0 .

O + (bu), + (b0), =0

(For a derivation see, e.g., Courant and Friedrichs [2], Whitham [31].)

This system describes the motion of an incompressible fluid when the fluid
is bounded below by a solid boundary end its depth is small relative to a
typical borizontal length scale. In (4.9) u(x,y,t) and v(x,y,t) are the
horizontal components of velocity and ¢ is the geopotential; i.e.,

¢ = gh(x,y,t), where g is the scceleration due to gravity and h is the
height of the free surface. Coriolis effects can be included in (4.9) by
adding the terms -fv and fu to the left sides of the first and second
equations, respectively.

The system (4.9) can be written as

u O 1 v (1} 0
(4.10) q, + 0 uw 0 |q 0 v 1 9 = 0,
é o u ¢ v

where q = (w,v.T. If we pre-multiply (4.10) by the diagonal matri.
diag {4.4,1), the result has the form

Aote *+ Aag + Mgy = 0,

where the Aj sre symmetric and A, is positive definite. (4.10)
is therefore a ’'’symmetrizable’’ hyperbolic system (e.g., Friedrichs (4],
John [9]).

The system is nonlinear and thus pot covered by the well-posedness
theory which is the subject of the present paper. However, the theory is
spplicable to the linearized version of the system. To obtain this version,
suppose that q = (u,v,8)T and q+q'  =(u +u’, vev, &+ 4n)T
sre solutions of (4.10), and suppose that the perturbations u',v’,§’

are small, If we substitute q + q' into (4.10) and neglect terms
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which are quadratic in the perturbation, the result is the following linear

system for q’:

0 v 0 0
(4.11) q', + 0 uw O qQ', + 0 v 1 q'y +Dg’' =0
é 0 o ¢ v

The matrix D involves various derivatives of uo,v,p; and if the system

(4.9) includes Coriolis effects then the parsmeter f would also appear in
D.

We now transform (4.11) to s symmetric system. We first note that
(4.11) is symmetrizable in the same sense that the nonlinear system (4.10)
is symmetrizable. This would yield the form (3.1) discussed ecarlier, with
A and the Bj symmetric, except that the time derivative would have a
coefficient matrix which is not the idemtity. In order to avoid this
coefficient, we introduce s change of varisble. Let Q = diag (v§, V8, 1},
and note that

Y 0 1 u o /¢
Q 0 u 0 Qal = 0 u 0
¢ 0 u /4 o u

A siwilar conclusion can be reached about the coefficient of q'y. The

system (4.11) can therefore be transformed to

v 0 /8 v 0 0
(4.12) w, + 0 uw O w, + o v /¢ w, + Ew = 0,
& o u o /¢ v

where w = Qq' = (u'vd, v'V8, §'). The coefficient E is different

from the coefficient D in (4.11) because of some derivatives of Q which

are encountered during the change of variable. The quantity = vgh s
26
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the speed of gravity waves in shallow water and will be denoted below by c.

The two—dimensional isentropic Euler equations of gas dynamics have a
strocture which is similar to that of the shallow water equations. The -

Euler equations are

13p
a, +ou + vV B - - —
t p 4 % pax
1 dp
(4.13) Ve t oy, + Wy = - - —
p 9y
pe + (pu)y + (pu)y = 0

p = plp)

Here u(x,y,t) and v(x,y,t) are the 3x- and y-compoments of velocity,
respectively; p is the density of the fluid; and p is the

pressure. (4.,13) can also be written as

1dp v 0 0
a 0 7% 1 dp
p O u 0 p v

where q = (u.v.p)T. The system (4.14) can be symmetrized by
1dp ¢ dp 0
this matrix is positive definite, so that (4.14) is symmetrizable

pre-multiplying by the disgonal matrix diag {p,p,

hyperbolic. From now on we will assume ;ﬁ > 0; in many situations
p = KpY, where y and K are constants and vy > 1.

The system (4.14) can be linearized and then symmetrized to produce a
form like that of (4.12), This process yields

a 0 v 0 0
(4.15) v, + 0 uwu O w, + 0 v ¢ L Ew =0
c 0 u 0 v

¢
Here w = (u',v’, (;)p')T. where u’ and v’ are the perturbations in
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the velocity components, p’ is the perturbation in the density, and

c = 3% . The latter quantity is the local speed of sound.

The above discussion implies that the linearized shallow water
equations and the linearized Euler equations can each be written in the form -
(3.1) discussed earlier,

(4.16) v, = Aw, + Bwy + Cw,

where in this case

o 0 ¢ v 0 ]
A=~ 0 u 0 » B =+~ v c .
c 0 n 0 c v 4

and C = -E, An analogous form can be obtained for the Euler equations in
three dimensions.

For later reference we discuss briefly the relation (4.5) for the :
system (4.16). The principal symbol of (4.16) is oA + «B, and its . i

eigenvalues are

51 = -(u,v)°(o,0) = -ug -~ va
(4.17)

52‘ 53 = —(u,v)’(oc,0) + clo? + 02)1/2

A typical relation (4.17) is graphed in Figure 4.1. The eigenvectors
corresponding to the eigenvalues &;,5,,E5 are

7y = (-0.0.0)T
(4.18)

29,23 = (20, 3w, (c? + w?)1/HT

We now discuss Maxwell’s equations of electromagnetism. These are
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(a) divE = L

e
(b) divB =20

(c) 2e 2(curl B 1)
C — = cur -
at Ho

o

(4.19)

B
(d) — = ~ curl E,
at :
where E is the electric field intensity, B is the magnetic induction,
p 1is the total charge density, J is the current density, ¢ is the speed
of light, and s, and y, are constants. E,B and J are vectors
having three componeats.

In certain situations the system (4.19) can be simplified by deleting
the first two equations. The reason is the following (e.g., Lorrain and
Corson [12]). If we take the divergence of (d), the result is
7t (div B) = - div curl E = 0. If at each point in space div B =0
at some time, then (b) follows from (d) and may be omitted. Similarly,
2u° aplat = 331 aplatc,
o¥o . Thus div E and ;% differ by lvconstuut at
each point in space. If for cach point they are simultaneously zero at some

equation (c) implies gy (div E) = —czuo divJI = ¢

since ¢ = (e_p.)"1/2

timo, then equation (a) is a consequence of (c¢) and may also be eliminated from
the system,

‘Under the above conditions Maxzwell’s equations reduce to the form

d

(4.20) —(

E 0 ¢2 curl \ [ E
at

B - curl 0 B

We now show that this system is hyperbolic. If the spatial variables are
denoted by (x,y) = (x,y;.y3), ss in (3.1), then the curl operstor

in (4.20) has the representation




It follows that (4.20) is symmetric hyperbolic if ¢ =1, If ¢ # 1 the

symmetric form can be obtained by replacing E with c'lE and t with
ct.

The principal symbol of (4.20) will be of interest in later
discussions. A calculation shows thst its eigenvalues all have multiplicity

two and are given by

.8y =0
(4.21) &, 64 = cla? + lel?)1/2

s g = —clo? + lul)1/2
Here o,0),0y are dual to X,¥1,¥2, respectively, and |u|2 = ulz + uzz.
The components of the corresponding eigenvectors are rational functions

of the quantities o,w;,0; and (02 + lul2)1/2,

4.2 Structure of the characteristic variety; group velocity,

In this section we discuss the structure of the characteristic variety
and how this structure is related to the problem of identifying the incoming
and outgoing portions of the solution. As suggested in Section 1, the
latter question can be of fundamental importance in the study of
well-posedness of initial-boundary value problems.

A typical relation (4.5) is graphed in Figure 4.1. This is the
characteristic variety for the linearized shallow water equations and the
linearized two~dimensional Euler equations. (See (4.17)) The plane
corresponds to the eigenvalue 51. and the comnes correspond to 52
and 53. The cones are right circular cones if and only if the plane is
horizontal. We let {2 denote the double come and [ denote the set of all

(9,£) which correspond to points on Q.
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(a) Characteristic variety (b) Projection onto (®,5) space
Figure 4.1

The characteristic variety for Maxwell’s equations (4.20) has a similar
structore., In this case each determination of & is a function of three
varisbles (o,wj,w;), snd each such & has multiplicity two.

The smallest eigenvalue is zero and would thus correspond to a horizontal
plane in Figure 4.1(a).
As noted in the introduction to Section 4, the relation (4.5) describes

the sot of all (o,w,f) in wave-like solutions

(4.22) Jllox + vy +5¢)

of the system (4.7), which is a special case of (3.1). In the current
discussion we are particularly interested in the directions in which these
waves propagate. In order to deal with this question, we first make some

remarks sbout the concept of group velocity as it applies to the present

sitvation. We then show how incoming and outgoing portions of the solution
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can be identified directly from graphs like Figure 4.1(s).

This discussion will be & description of solutions of (3.1) when C = 0
and the coefficients are constant ; and for sufficiently high frequencies
it will be an approximate description of the general case, where C may be
nonzero and the coefficients may depend on (x,y,t). (See the inmtroduction
to Section 4,) At the end of this sub-section we rolate this discussion to
the theory of propagation of singvlarities, which provides a rigorous
treatment of the more general case,

For each fixed t, the individual mode (4.22) is constant along lines
in the (x,y) plane for which (x,y)*(c,®) is constant. It then
follows that the wave propagates in the direction (o,w) with phase speed
~Eo2 + lwl2)-1/2, However, when one superimposes various waves of the
form (4.22), the net effect is to produce a solution in which energy is
propagated with a velocity which may be different from the phase velocities
of the individual waves. This velocity is the group velocity, and in the
notation of (4.22) it is given by

13 X3
(4.23) grad(-¢) = (- — - —)
- Jo] de

Group velocity and phase velocity differ, for example, in wave groups
which propsgate in one dimension and which are ''dispersive’’, i.e., the
phase velocity varies with wavelength. (e.g., Whitham [31]) In
nulti-dimensional problems the two velocities may also differ for reasons
which are not related to variations in wavelength. This effect can be seen

most easily in the case of the simple equation
(4.24) v tuptuy = 0

The solutions to this equation are constant along charscteristic curves for

dx y
which gF = gr = 1, and they thus represent translations in the (1,1) direction.

However, when one substitutes a wave form (4.22) into (4.24), the result

is § = -o-w, and by choosing (o,w) sppropriately ome can obtain a wave-like
solution having a phase velocity which points in any desired direction.

This direction cannot be meaningful because of the translatory nature of

(4.24). In fact, suppose that s family of such waves is superimposed by the
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integral

foi(ax +t ey - (o)t} (5, 4) dodu,

Pl

where f 1is an amplitude function. This integral cam be written

f.i[ o(x-t) + w(y-t)] £(5,0) do de
=f(x-t, y-t),

where f is the inverse Fourier transform of f. The individual waves can
move with phase velocities having any direction whatever, but the waves
superpose to produce a simple translatory effect. In this case the group
velocity is (- 35, - 3g) = (1,1), which is the direction of translation.

Some interesting applications of the concept of group velocity are
found in the study of finite difference spproximations. See, e.g.,
Trefethen [27], [28] and Vichnevetsky and Bowles [30].

We now relate the directions of the group velocity to the structure of
the characteristic variety graphed in Figure 4.1(a). In this particular
example there are three determinations of £ as a function of (o,w).

The determination corresponding to the plane is simplest to analyze; its
gradient is constant, so the group velocity is a constant function of
(6,w). The plane thus represents a translatory motion which is similar

to that found in solutions of the equation v +ug 4+ u, = 0.

In the example illustrated here the group velocity points into the spatial
domain x ) 0,

The cones ! are more complicated than the plane. In Figure 4.2 we
show cross—-sections of these cones for fizxed & > 0 and fixed & < 0. The
directions of group velocity are indicated by the solid arrows; the group
velocity is grad (-§) = (- 3=, 32). so the direction of this velocity
is opposite the direction of most rapid increase in £ = &(o,w). These
directions are orthogonal to the level sets shown in the Figure. In this
picture the group velocities are different from the phase velocities, since

the latter always point slong lines which pass through the origin.
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(a) €0 b) £ <O

Figure 4.2. Cross-sections of Q for fized ¢

In parts (a) and (b) of Figure 4.2 the points A,B denote the points

(6, w, £) corresponding to group velocity which is tangent to the
boundary x = 0. The relevance of these points will be discussed below and
in the next sub-section. Ve now explain their locations. The vertical
coordinates of points on () are given by sums of vertical coordinates of
the plane snd those of a right circular cone. (See (4.17)) At each point
A or B the gradient of the right circular cone is denoted by the dotted
srrow C, which points along a line passing throvgh the origin. The
gradient of the plane is indicated by the dotted arrow P. Their sum lies
along the same line as the group velocity.

The comes  correspond to the propagation of sound waves and gravity

waves, respectively, for the linearized Buler equations and the linearized
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shallow water equations, In the analogous picture for Maxwell’s equations {2
wonld correspond to the propagation of electromagnetic waves.

Vo now mention some algebrsic aspects of the discussion given above.

We have denoted by [ the set of all (w,f) corresponding to points on
i.e., [ is the projection of  onto the (w,£) space. For the example
illustrated here the cones 2 determine two values of o for each (w,¢&)
in the interior of I. The above discussion implies that each
determination of o = o(w,£) on each component of [ can be

associated with motion into or out of the spatial domain x > 5.
Furthermore, some remarks made in the introduction to Section 4 imply that
for each such o, the number ic is an eigenvalue of M(w,if). (See
(4.6)(a)) This suggests that ome can identify incoming and outgoing
portions of the solution by diagonalizing M(w,if). This subject will be
addressed in the next sub-section. As part of this discussion we point out
that M(w,1£) is defective when (v,£) corresponds to tangential

incidence. In Section 4.4 we describe a process by which the incoming and
outgoing portions of the solution are labelled algebraically im the theory
of well-posedness. '

We now relate the esrlier discussion of group velocity to the theory of
propagation of singularities. The latter is mainly & discussion of the
propagation of high~frequency portions of the solution, since the smoothness
of a- function is governed by the rate of decay of its Fourier transform.

Denote (x,y,t) by z and (0,0,%) by C , and let p(z.l) denote the
determinant in (4.5). The singularities in the solution propagste along
bicharacteristic curves, which are corves (z(v),l(t)) satisfying the

Hamilton-Jacobi equstions

(a) z = ;rtdc p(z,0)

(‘.25) (b) L = -‘r.dz P(!oC)

and the constraint p(z,5) = 0, (e.g., Nirenberg [17), Taylor [26]) The
cuxrve z(t) denotes the path of propagation in the (x,y,t) space, and the

curve G(t) records any frequency shifts which take place during the

propsgation. For a discussion of ray theory in a more applied setting, see,
35
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©.g., Whitham [31].

Equation (4.25)(s) says that the direction z is parallel to
gudC p(z,C), i.e., is orthogonal to the level sot {z:p(z,z) = 0}. This
set is the characteristic variety defined by (4.5); an example is graphed
in Figure 4.1. It then follows that the projection of z onto the spatial
variables (x,y) is perpendicular to level sets of the type graphed in Figure
4.2. That is, the direction of propagation lies along the same line as the
group velocity. One can check easily that the direction of propagation is
the direction of the group velocity, rather than the exact opposite; for
example, on the upper cone (£ > 0) in Figure 4.1, an increase in t

corresponds to a movement of (x,y) toward the center of the cone.
4.3 Properties of M(w,if)

In this sub—section we use the structure of the characteristic variety
to describe some properties of the matrix M(e,if) = A"1(iI - ) iuij).
(See (4.3)) We will deal mainly with the diagonalizability of this matrix and

the occurrence of purely imaginary eigenvalues. A noted in the previous

sub-section, the behavior of M(w,if) 1is closely related to the problem of
identifying the incoming and outgoing portions of the solution.

The matrix M(w,s) arises from the nse of Fourier and Laplace
transforms with respect to y and t, respectively. Before we proceed with
the discussion of M(w,if), we first mention why one would tramsform in
(y,t) rather than in some other set of variables.

First, there can be 8 problem with transforming in the normal variable
x. Such a transformation would require information about the solution away
from the boundary x = 0, and this does not seem appropriate in a discussion
of boundary conditions. This difficulty can be avoided by transforming in
(y.t).

A second reason is related to the problem of identifying incoming and
outgoing modes. We have already noted thst the eigenvalues io = ic(w,£)
of M(w,if) are very useful in this regard. On the other hand, if

we were to transform (3.1) with respect to (x,y), say, then the result would
be

36




PREPPIRRELE

(4.26) ﬁt(a.u.t) = (igA + Ziijj);

(if C=0, F=0). The properties of solutions of this system are governed
by the eigenvalues if{ of ioA + Ziijj. Unfortunately, the
discussion in Section 4.2 implies that various incoming and outgoing modes
are mixed together in certain determinations of if as a function of
(o,w). These determinations are associated with the comes . It thus
does not seem possible to accomplish the desired separation by studying the
transformed equation (4.26).

We now discuss the eigenvalues of M(w,if). We recall that if io
is a purely imaginary eigenvalue and z 1is a corresponding eigenvector,
then

(4.27) ioz = A l¢iex - %iuij)z.
or

(4.28) ifz = (icA + Ziujnj)z
According to remarks made in the introduction to Section 4, the symhol
(4.29) ioh + LioB,
i

has purely imaginary eigenvalues and a complete set of real eigenvectors.
This fact will be exploited in Proposition 4.1. f

In general, the number of purely imaginary eigenvalues of M(w,if)
may vary with the position of (w,f). In the case of the shallow water or
Euler equations there are two cigenvalues ic associated with the double
cone (I, when (w,£) is in the interior of [. (See Figures 4.1 and 4.2)
As (w,£) approaches the edge of [, these eigenvalues coalesce, and as
(v,) leaves I these eigenvalues leave the imaginary axis. They cannot
be purely imaginary, since for any imaginary eigenvalue io the point
(0,0,£) must 1ie on one of the surfaces in Figure 4.1.

In fact, for (w,f) outside [ these eigenvalues must have the form

* p + o, where p is real. The eigenvaluves of the real matrix
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are either resl or come in complex conjugate pairs o + ip. Vhen we
multiply by {1 the result is +p + io.

For the Euler and shallow water equations there is also a value io
associated with the plane illustrated in Fignre 4.1, In many cases there is
no difficulty with expressing ¢ as s function of (w,5). The plane

satisfies the equation
£ =~ ou - wv

(see (4.17)), 30 1o cap be written in terms of (w,%) whenever u # O.
This condition is equivalent to requiring det A # O, where A is the

coefficient of w in (4,16). 1In Section 3.1 we assumed that this

x
condition was satisfied, and we used it to write M(o,s) = Al - z iijj)
(e.g., (3.9)).

The assumption det A # 0 has a physical interpretation. The vector
field (u,v) associated with the system (4.16) is the velocity of the
flow about which the system has been linearized. If A is to be
ponsingular, then this flow cannot be zero and cannot be tangent to the
boundary x = 0. In Figure 4.1(a) the plane cannot be horizontal and canmnot
have a gradient which is parallel to the w-axis. The assumption det A # 0
is thus not slways valid for the shallow water and Euler equations,

~ In additionm, it is never valid for Maxwell’s equations. This can be
seen from the representation (4.20) for the system or from the formula
(4.21),

We now make some remarks sbout the diagomalizability of M(w,if).
Suppose that the characteristic variety has a cone { , and suppose that for
(w0,£) in T there is no difficulty with solving for values of ig
sssociated with surfaces other than {i, There will be no need to make any
sssumptions regarding the multiplicities of any of the eigenvalues. The
following Proposition may be contrasted with Proposition 3.2, which

describes M(w,s) for Re s > O,
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Proposition 4,1, If (w,£) is in the interior of I' , then M(w,if)
= —l(igl - Xiuij) has purely imaginary eigenvalues and a
complete set of real eigenvectors. This is not the case if (v, ) is
outside I' . The eigenvectors can be determined from those of the symbol
(4.29), ioA + Zioij.

Proof, Equations (4.27) and (4.28) show that the eigenvectors of
(4.29) are also eigenvectors of M(w,if). We know that (4.29) has a
complete set of real eigenvectors corresponding to fixed (o,w) and
various eigenvalues if. We want to show the same thing for M(w,if), for
fixed (w,f) in I' and various eigenvalues ioc.

Suppose that (w,£) is in T , and let oy,... o, denote
the eigenvalues of M(w,if). For each o choose a basis Ej
for the eigenspace of iojA + Ziuij corresponding to the
eigenvalue if. We are allowing for the possiblity that (4.29) might have
nultiple eigenvalues. The elements of Ej ere also eigenvectors of
M(w,1f) corresponding to the eigenvalune iqj- We claim that the union
of the Ej is a complete set of vectors. There are clearly enongh of
these vectors. The fact that they are linearly independent follows from an
argument which is essentially the onme which shows that eigemvectors
corre;pondin; to distinct eigenvalues are linearly independent. This

completes the proof.

We make some comments about the behavior of M(w,if) when (w,£)
lies on the edge of . According to Figures 4.1 and 4.2, this case
corresponds to group velocity which is tangent to the boundary, and it also
corresponds to the coalescence of different values of o(w,£). In
addition, as (w,£) approaches the edge of I' , various eigenvectors of
M(w,if) associated with the two determinations of io{w,£) come
together, so that M(w,if) fails to have a complete set of eigenvectors.
In the case of the Euler and shallow water equations, M(w,if) acquires s
2 x 2 nondiagonalizable block. In systems for which & corresponds to
multiple eigenvalues, the nondiagonalizable block can be larger. This
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occurs, for example, with Maxwell's equstion, (In this case it is not
possible to write M(w,s), since det A = 0, but there is an anaslogous
matrix which is used. See Section 1 of Majda and Osher [14].) The
defective bohavior of M(w,i&) causes major difficulties in the theory of
well-posedness. (See Section 6)

Proposition 4.1 and the accompanying remarks have obvious extensions
to more general cases, e.g., where the characteristic variety has several
different cones. In any system the major point of interest is the behavior
of M(w,1%) when the eigenvalues ioc coalesce, that is, at tangentisl
incidence. The examples mentioned here contain this principal difficuolty.
For the sake of definiteness and clarity, we orient many of the discussions

in the remainder of the paper to these examples.

4.4. An plgebraic labelling of incoming and omtgojng modes

In this section we discuss s process by which incoming and outgoing
modes are labelled algebraically in the theory of well-posedness. Ve

consider the elementary solutions

(4.30) elox + du'y + ift

of (4.7) which have been discussed extemsively in previous sub~sections, We
analyze what happens when the dual variables if and ic are perturbed |
to the complex values s = n + if and K= p + ic, respectively, so

that the resulting form ‘

(4.31) oKX * duty 4 st

is also a solution of (4.7). The sign of Re <, when Re s ) 0, will
indicate whether the mode (4.30) corresponds to group velocity pointing into
or out of the spatial domain x > 0. This labelling is used in a
fundamental manner in the theory of well-posedness. (See Section 5) The
relationships between the modes (4.30) and (4.31) will be discussed more
extensively in Section 5.3.
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The labelling process depends on an assumption that K and s are

invertible snalytic functions of esch other for n near zero. This
analytic dependence is found in the examples which have been discussed
earlier. (See (4.17) and (4.21)) However, it fails for points (o,w, £)
on the cones  when (w,5) is on the edge of | (i.e., tangential
incidence). It also fails for points corresponding to the plame in Figure
4.1 when the plane is horizontal. This situation is encountered when the

boundary is characteristic.

Proposition 4.2, Suppose that < and s have the analytic
dependence mentioned above, and suppose that (4.30) is perturbed so that
Re s > 0. If (4.30) corresponds to group velocity pointing into the spatial
domain x > 0, then K {is perturbed so that Re K < 0, If the group
velocity points out of the domain, then Re K ) 0.

d
Proof, The vector group velocity is (- gé,-—v‘nﬁ)(see (4.23)).
Incoming and ovtgoing modes thus correspond to 8%&/dc negative and
positive, respectively. The former case is illustrated in Figure 4.3; the

solid arrows indicate that perturbations in & and o have opposite signs.

3 o
ﬂ\
—-——
o - -
n i P
s-plane K -plane

Figure 4.3. The case %ﬁ < 0.

Because of the analytic dependence, the complex derivative
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ds
dc eoxists and is equal to g&. Perturbations in x and s thus have

a ratio which is independent of direction. In the case of Figure 4.3 these
perturbations are negatives of each other, so that Re K ( O when Re s > O,
This is illustrated by the dotted arrows. Similarly, if (4.30) corresponds to
an outgoing group velocity, then %5 > 0., In this case ii > 0, and

Re s > 0 implies Re ¥ > 0. This completes the proof.

The above proof resembles an argument given by Taylor [26,p 202] in a
discussion of reflection of singularities. A similar argument wss also
given by Trefethen in a study of the relationship between group velocity and
the stability of boundary conditions for finite difference approximations
(e.g., [27], [29]).

We should note that there exist modes (4.31) which cannot be obtained

by perturbing (4.30)., When Re s > 0 these approach the form exp(kx +
iw°y + 1Et), where Re K # 0., Such modes are found for (w,&)
outside ['. (See Sectiom 5.3)
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S. Interpretations of the Uniform Krejss Comditjon

In this section we discuss some cffects of the ‘'Uniform Kreiss
Condition’’ (U.KE.C.). This is the condition (3.20) which was introduced in
Section 3.3 and which is sufficient to assure the well-posedness of the IBVP
(3.1),(3.3),(3.4). In this section we show that the U.K.C. can be regarded
a8 a solvability condition; it enables one to solve for certain
’’incoming’’ dependent variables in terms of ’'‘outgoing’’ variables and
boundary data. The U.K.C. is used for this purpose im proofs of
well-posedness. The above interpretation is an analogue to the situation in
one space dimension.

The present discussion is based on the use of Fourier transforms and
Laplace transforms. The conclusions reached here are therefore limited to
systems which have constant coefficients. Analogous conclusions may be
expected for the high-frequency portions of solutions to
variable—coefficient problems, since the coefficients appear nearly constant
to waves whose frequencies are sufficiently high, This principle is
contained in the theory of propagation of singularities (e.g., Niremberg
[17), Taylor [26]) and in discussions of '’slowly varying’’ wavetrains in
the applied literature (e.g., Whitham [31]). However, the
variable-coefficient case is technically more complicated, and it may be

particuolarly difficult near tangential incidence. (See Section 5.3)

In any case, the properties of the high-frequency portions of the
solution are of major interest; estimates involving L2 norms and
Sobolev norms (e.g., (3.5)) play a major role in the theory, and these norms :
are governed by behavior at high frequencies.

In Section 5.1 we give an outline of some effects of the U.K,C. This
discussion is based on the system (4.2)(a) of ordinary differential
equations which was obtained through the use of Fourier and Laplace
transforms. The structure of the solutions of this system is discussed in |
Section 5.2, 4

In Section 5.3 we discuss in detail the nature of the ’‘incoming ‘'’ and |
'’outgoing’'’ modes and how these modes are affected by the U.K.C. The case :
of tangential incidence is included in this discussion. The development in |
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this sub-section is given in torms of the shallow water equations and the
two-dimensional Euler equations.
In Section 5.4 we discuss some weak forms of well-posedness which can

be encountered if the U.K.C. is not satisfied completely.

S.1. Genexal romarks

In this sub-section we outline some effects of the U.K.C. The

discussion is based on the transformed problem (4.2),

(a) u (x,0,3) = M(w,s)s - A 1R(x,0,s)
(5.1)
(b) al(oo”a‘) = SGII + i(ﬁhs)o

which was derived earlier.
In order to study the solutions of this problem we transform N to
block form. Let Q(w,s) be s matrix such that

M 0
(5.2) o 1xq =

t
° K ]

The transformation is chosen so that the eigenvalues k of ll and j
LY satisfy Re Kk (0 and Re ¢ > 0, respectively. The dimensions ﬁ
of M; and M, are thus £ x £ and (o -%) x (n~2). C(of. ‘
Proposition 3.2) :
In the theory of well-posedness a great deal of attention is paid to ,
|
finding block forms which are smooth functions of (w,s). We will not }
vorry about this nmow. In (5.2) the matrices Q,M;, and M, are not
determined uniquely; this will be discussed delow.
The system (5.1)(a) can be written as

a’13, - almae1g - a7 la TR,
or
.




(5.3) Gx(x.u.s) = v +G,

where ¢ = Q 14, For convenience we partition Vv into vectors oI

= (Ql.ntu.;l)T ‘nd VII = (;2+1.0.-;m)'r-
The solutions {V,,...¥;} and (¥5,7,....V;) can be
constructed from functions of the form e<%, where the values <K are

eigenvalues of M; and M), respectively. (See Section 5.2) The

o

solutions ;j of (5.1)(a) thus correspond to solutions of the partial

differential equation (3.1) which are made up of modes

(5.4) ‘Kx + jw'y + st

N
f
!
g.
;

If 1 £j <% then Re x ¢ 0, Otherwise, Re K ) 0. The labelling
process of Proposition 4,2 suggests that the modes (5.4) may be associated
with incoming waves if Re Kk ¢ 0 and outgoing waves if Re K > 0. Ve may
therefore think of 91....31 as '"'incoming’'’' components of the solution
and $2+1"";n as "’'outgoing’’ components. This identification is
developed in greater detail in Section 5.3. The case of tangential

incidence is included in this discussion.
The blocks in (5.2) are not determined uniquely, since one can perform

similarity transformations on "1 and H2 individually. These would

amount to limear changes of variables among (¥5,...%;) and [32+1""$n]'
Such transformations do not alter the classes of incoming and outgoing
solutions,

¥e now transform the boundary condition (5.1)(b),

[I.—S]ﬁ(o.m. s) = i(@n s).
Since v = @13, this can be written as

(5.5) [1,-SlQv = g (for x = 0)
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Lot Qys+++q, denote the columns of 0O, and let

of = [q1....q1] ;
11 i
q - [%+1lc-cqn] .

The boundary condition (5.5) is thus
[Io"S] [QInQIIIG - io

(1,-s10%¢Y = —[1,-s1Q!%51T +

This will be denoted by

FORr S W i g,

T oy

(5.6) N(w,8)¢1 = P(w,)¥XL + §  (for x = 0)

It is now possible to see that the U.K.C. can be regarded as a
solvability condition. First suppose that 9,009, are orthonormal,
30 that N(w,s) is a matrix N(w,s) of the form (3.19). In
this case the U.,K.C. says explicitly that ldet N(w,s)| 2> 8§ for Re s > O,
w ¢ B®, The linear system (5.6) can thus be solved for ;

GI. i.e., we can solve for the ‘‘incoming’’ variables 31....32 in

terms of the '‘outgoing’’ variables $l+1"";n and the boundary
data 3.

The ssme conclusion can be reached, in at least many cases, if ‘
Q3,..¢qy are not orthonormal. Some arguments given in Section 3.3 show
that if the qj(u.s) are plecewise continuous in (w,s) and
homogeneous of degree zero, them the U,K.C., implies that |det N(w,s)!
is bounded away from zero. The linear system (5.6) is thus solvable.

In the following discussions we assume that the vectors qj(u.s) are
bomogeneous. This is not a major restriction, since any scaling of the
variadbles (w,s) in (5.2) can be confined to M and the blocks M

and My, Also note comment (3) in Section 3.3.

The solvability condition contains a uniformity which is of interest.
Let s =1n + if, fix n > 0, and consider the limit |u|2 + |£|2 + o,
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Because ldet N(w,s)| > 6 for a1l (w,s) with Re s > O, the

matrizx N(w,s) is vniformly invertible as the frequencies tend to infinmity.
The significance of this becomes apparent when the U.K.C. is compared

with the requirement (3.18), det N(w,s) # 0 for Re s > 0, which was

shown to be necessary for well-posedness. For reasons of homogeneity,

N(w,s) = N(w’,s’'), where
(WJ’)
(ol + 15121/2
(See Figure 5.1) The condition (3.18) requires det N(w’,s’) # 0 for

Re s’ > O, but it allows the possibility that det N(w’,s’) may tend to
zero as Re s'+ 0.

(0',s8') =

(U),S) = (w’n‘l’ig)

Figure 5.1

That is, for any fixed n > 0, N(w,s) may become more and more singular
as |0|2 + |€|2'+ o, This may have major effects on the
~I

solstion v~ of the system (5.6); unless the right-hand side of (5.6)

satisfies special constraints, the ''incoming’’ components QI way be
large relative to 11 qna g for large frequencies. This corresponds

to a loss of derivatives at the boundary, or '‘weak’’ well-posedness. This
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will be discussed in greater detail in Section 5.4.
In Section 3.1 we assumed that the boundary condition has the special

form (3.4),

of = sull + [ (for x = 0)

The srguments given in the present section make it possible to justify this

assumption. Suppose that we use s more general linear boundary condtion

(5.7) Bﬂ(O.y-t) = h"lt)‘

where B is a constant matrix. Apply Fourier and Laplace transforms with

respect to y and t, respectively, and write the result as
B1a1(0,v,3) + BIIGII =« f(w,s)

Here Bl and BI! asre matrices whose columns are the first £ and
last n - £ columns of B, respectively.

Now suppose o = 0, i.e., consider waves having phase velocities
which are normal to the boundary. In this case MN(w,s) = sA”1l, Since

A 1is diagonsl and has the form (3.2), one can identify 81 as the

*"incoming’' portion of the solution. If we are to be able to solve for
a1 in terms of &I and 1, then B! must be an invertible

square matrix. Thus Bl is 21 2, snd (5.7) can be written as
of = ~(gI)y~1gII II , (BI)'lh.
This has the form (3.4).

5.2. Solutions of the system (5,1),

In the previous sub-section we used modes (5.4) for which Re X > O,
i.e., which grow exponentially as x increases. This may appear totally

snresasonable, since these modes do not have finite energy on the interval
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0 (x (o, In addition, none of the modes (5.4) satisfy the homogeneous
initial condition which was uvsed to obtain (4.2)(a) { or (5.1)(a)). 1Isn
order to make the use of such modes secem a little more legitimate, we
therefore derive and discuss some representations of solotions of (5.1). It
will become clear that the U.K.C. has 2 natural interpretation in terms of a
two~point boundary value problem associated with (5.1).

We first justify a remark made at the beginning of Section 4. There we
assumed that the effects of the initisl dats f in the IBVP
(3.1),(3.3),(3.4) can be absorbed into the forcing texrm F. This is done in
order to facilitate the use of the Laplace transform with respect to t.

The preliminary transformation can be accomplished by a procedure used by
Rauch [21] in a study of the regularity of solutions of the IBVP,

Suppose that the initial value f vanishes identically in »
neighborhood of the space—~time corner x = 0, t = 0; and soppose that the
pure initial-value problem for (3.1) is well-posed. There then exists a
function w such that

v, = Aw_ + ZBj g%j
wix,y,0) = f(x,y)

(Ve are assuming C = 0). Because of the finite propagation speed associated

with hyperbolic systems, there is a & > 0 such that w(0,y,t) = 0 if
t {8. Choose h ¢ C°(R) so that 1(0) =1 and h(t) =0 for t ) §.
Let u be s solution of (3.1),(3.3),(3.4); and let v(x,y,t) = uw ~ h(t)w.
It follows that v satisfies
A ) &y F - b
vt = Avy + Bj ayj + (F - h'(t)w)
v(x,y,0) = 0

vI = syll

+ 3, for x =0,

This is the form which was used to obtain (4,2). By & re-labelling, we may
continse to denote the forcing term by F(x,y,t) and the solution by
u(x,y,t). Becavse of the finite propagation speed, we may assume that
F(x,y,t) has compact support with respect to x and y.
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The system (5.1)(a) can be solved by studying the block version (5.3).

Ve assume that M; and M, are themselves block diagonmal,

where each block is triangular and is sssociated with a single eigenvalue.

If necessary, I1 and “2 can be transformed to this form by linear

changes of variables among 91,...92 and Gl+1""¢n' respectively. T

Under these sssumptions each equation in (5.3) has the form

dw
(a) — = Ky + H(x)
dx

dw K z
(b) E; = Ky + cj'.’ + H

(5.8) or

In (5.8)(b) the vy are solutions of equations which can be solved
independently. of (5.8)(b). We seek solutions of (5.4) which are in
L2(0,=), since we are ultimately considering solutions of the partial
differential equation which satisfy energy estimates like (3.5).

We first consider the case Re X ¢ 0. VWhen one multiplies (5.8)(a) by

the integrating factor exp(-Kx) and integrates, the result is
x
(5.9) w(x) = “Xw(0) + £ o< (x-2)H(2)dz.

The solution w is in L2(0.°). since Re K (0 and H has compact
support. The first texm in (5.9) represents the propagation of the initial
data w(0); and the second can be regarded as a superposition of pulses,
each of which appears at s point z and is then propagated by the natural
frequency in the problem. The more complicated equation (5.8)(b) can be
trested in & manner which is similar to the above.

When Re ¢ > 0, the representation (5.9) is not appropriate. In this
case the function w in (5.9) would be in Lz(O.ﬂ) only if the
initial value w(0) and the forcing term H satisfy s special relation.
Instesd, one should impose the conditior w(x) - 0 as x + o, Under this

assumption the solution of (5.8)(a) has the representation

(5.10) w(x) = !x ¢ (x-2)g(y) 4,
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An analogous formula can be found for (5.8)(b).
The system (5.3) (or (5.1)(a)) should thus be associated with a two-point
boundary value problem, if the solution is to be in Lz(O.w). The

I

components V', corresponding to Re k < 0, should be prescribed at x = 0;

and the components QII. corresponding to Re Kk > 0, should be set to
zero at infinity.
We nov show that these conclusions make sense in physical terms. The

solutions w in (5.9),(5.10) can be factored into the form
Kg
(5.11) wix) = ¢ * ¢(x),

for suitable c¢(x). By inverting Fourier and Laplace transforms, one can
see that the solutions of the original partial differential equation are

thus made up of functions

(5.12) KX o'y + st ()

An inspection of the formulas (5.9),(5.10) reveals that these functions are
superpositions of puises which are propagated by modes of the form exp(kx +
iw*y + st). According to the labellirg process suggested by Propostion

4.2, the cases Rex (0 and Rek > 0 correspond to '’'incoming’’
(rightward moving) waves and ’’outgoing’’ (leftward moving) waves,
respectively.

In the two-point boundary value problem the ’'‘leftward moving’’ (Re K ) 0)
components :II are set to zero at infinity. This is physically
reasonable, since leftward moving waves can arise only when they are
stizulated by the inital data or by forcing in the differentisl equation.
The process outlined at the beginning of this sub-section incorporates both
of these effects into the ’''forcing’’ term H in (5.8). In the case

Re X ) 0 the envelope c(x) in (5.11) and (5.12) has the form

(5.13) c(x) = [* e FIH(z)dz
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(see (5.10)) This envelope can be nonzero only when x is within the
support of H.

'"'Rightward moving'’ (Re Kk ( 0) waves may be prescribed at the boundary
x = 0, and in the interior they may also be stimulated by forcing or by the
initial data. Both of these effects are represented in the formula (5.9).
In order to properly define the ’'’'incoming’’ components at x = 0, it is
necessary to impose a suitable boundary condition. The U.K.C, describes a
class of such conditions; if a boundary condition satisfies this
criterion, then it has the effect of expressing the '’'incoming’’ modes in
terms of ''outgoing’’' modes and the boundary data (the function g in
(5.1)).

The remarks in this sub-section suggest an effect of the labelling

process of Proposition 4.2. The cases Re K (0 and Rek > 0 force one
to make particular choices for the boundary conditions for the system of
ordinary differential equations (5.1)(a). The labelling guarantees that

these choices are physically reasonable.

$.3 Structure of ‘’incoming’’ and '‘outgoing’'’ modes; behavior at
tangentisl incidence

In Proposition 4.2 and in Section 5.1 and 5.2, we identified modes

exp(cx + iwey + st) as ‘’‘incoming’’ or '‘outgoing’'’ portions of the |
solution when Re Kk ( 0 and Rek > 0, respectively. (Here Re s ) 0.) 1In !
the present sub—section we examine more closely the nature of these modes
and the validity of the above labelling. In particular, we discuss the
structore of the modes corresponding to tangential group velocity and the
effects of the U.K.C. on these modes. We also mention the strictly
decaying modes which occur when (w,f) § I' . The present discussion
is given in terms of the linearized shallow water equations and the
linearized two-dimensional Euler equations.
In this sub-section we consider only the solutions of the homogenecous B
system (4.7), v, = Au, + Z Bj %? « In the previous svb-section we noted that
these solutions can be used to build up solutions of the more general

inhomogeneous system (3.1) (with C = 0). '
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The idea behind Proposition 4.2 is to perturb an oscillatory solution
exp (dox + iw*y + iit) of (4.7) to a solution of the form

(5.14) X + ity + st

where K = p + ic and s = n + if. The sign of Re X , when Re s > O,
indicates whether the mode (5.14) is '’incoming’’ or '’outgoing’’, The
Proposition requires that K gnd s be invertible analytic functionms of
each other. As noted earlier, this excludes the case of tangential
incidence. We discuss such modes below, but we first consider the analytic
case.

The mode (5.14) can be written as

(5.15) PE + nt iox + du'y + it

We regard this as an oscillatory mode which is modulated by the amplitude
function A(x,t) = exp (px + nt).

Proposition 5.1, If the oscillatory part of (5.15) corresponds to
group velocity which is not tangent to the boundary, then (5.15) approaches
the configuration

N(x-vt)  dox + dwey + ift
(5.16) e . y* it

ss lo) + |E] > o for fixed > 0. Here v is the x—component

(i.e., normal component) of the group velocity.

Proof, The exponent in the factor 'A(x.t) in (5.15) can be written as
n(%x *+t), The ratio ﬁ is equal to ﬁ.. where p’ -|%|
and ' -|g|; here £ = (w,£) and 1212 = lwl? + £2, (This projection
is similar to that of Figuore 5.1.)

Since p’ =0 when wn’' =0 in the present case,
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p' Ap' dp’
-, — R —
n' An’ dn’ n'=0

The approximation becomes accurate in the limit n'* 0, i.e., when n > 0

is fixed and lul + |E] + ®. Because of the analytic dependence,

dp’ dc do 1
dn’ ds 4t v

n'=0

(See (4.22)) The exponent in A(x,t) is thus

nGx+ ) ~n-dr e 0) = - Pz - )

The Proposition then follows.

The mode (5.16) is an oscillatory wave which is modulated by an
exponential envelope which moves at the normal component of group velocity.
If v > 0, then (5.16) decays as x inoreases. As the group velocity
approaches tangential incidence, i.0., as v + 0, the mode decays more and
more rapidly, so that the effects of the mode are concentrated near the
boundary.

If v <0 (i.e., Re X ) 0), then the modes (5.14), (5.15) are
''outgoing’’, i.e., leftward moving. According to the remarks in Section
5.2, modes of this type are stimulated in the interior by forcing and the
effects of initial data, The effects of such stimulation decay rapidly to
the l1eft when v < 0 and |vl is small (cf. (5.13)).

We now consider the case where the oscillatory part of (5.14), (5.15)
has group velocity tangent to the boundary, i.e,, v = 0.

The discussion in Section 5.1 suggests the effects of the U.K.C. on
these tangential modes. In the earlier discussions the modes (5.14) (5.15)
have been regarded as ’'’incoming’'’ when p = Re K < 0. According to the
remarks in Section 5.1, the U.K.C. says that the boundary condition must
give the values of the portion of the solution corresponding to ReK (O,
In the present case, this means that the boundary condition must prescribe

the bebavior of waves moving tangent to the boundary. It is therefore of

interest to study the structure of such modes. The main conclusion,
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Proposition 5.2, will be useful in the discussion of weak well-posedness

given in Section 5.4,

In the following discussion of wave propagstiop near tangential
incidence, we consider only the case of constant coefficients. When the
coofficients are variable, major complicstiomscan arise. For example, the
Hamilton-Jacobi equations (4.25) imply that small varistions in the
coefficients can cause small changes in frequency for a given mode. If a
point (o(x),u(v),£(t)) is confined to , snd if (w,£) is nmesr
the edge of ', then the mode can switch quickly from ’’incoming’’ to
'‘outgoing’’ as the paramenter <t is varied.

Substantial work has been dome on the propagation of singularites
(i.e., bigh frequencies) near tangential incidence for various types of
equations. The existing theory is quite complicated. See, e.g., Taylor
[26] and the references given therein.

Ve nowv discuss the form of (5.14),(5.15). Suppose that (o,0,8) =
(0,,9,,5,) is on 2 and (w,t) lies on the edge of T , so that
the oscillatory part of (5.14),(5.15) corresponds to tangential group velocity.
(cf. Figures 4.1 and 4.2) The arguments of Propositions 4.2 and 5.1 are
not valid in a neighborhood of such a point, since K and s are not
apalytic functions of each other. In the case of the shallow water and Euler
equations, there is s square root singularity in K as a fonction of s,
(cf.(4.17)) This is suggested by Figure 5.2; this is a cross—section of the
cone §! corresponding to fized w = w,. In particular, the resl

parts of K and s satisfy a relation
P~ Ry

for small n > 0. Here R is a constant.
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Figure 5.2. Cross-section of (I for fizxed w = v,.

Proposjtion $.2, Suppose that the oscillatory part of (5.15)
corresponds to tangential group velocity (i.e., v = 0), and suppose that the

singularity between K and s has the form described above. The envelope

A(x,t) in (5.15) is then approximately equsl to
(5.17) exp [RwlCl (x + i/ﬁ'_‘l t)]
when the ratio TgT is small.
Proof, As in Proposition 5.1, the envelope A(x,t) has the form

i exp ['q(%: x +t))

In the present case p'=~ R/R’ when 7' is small., Since n' = T‘CIT,

A(x,t) can be written as

oo iy et o e 2

R
A(x,t) = exp [n(]? x + t)]
= exp [RATZ] x + qt]

This is equivalent to (5.17). This completes the Proposition,

Now suppose R ¢ 0, i.e., Re kK < 0. In this case the mode (5.15),

n e
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A(x,t) exp (iox + lw'y + ift),

decays rapidly away from the boundary. From (5.17) it is apparent that the
rate of decay increases without bound as Izl + o with 3 > 0 fixed.

This situation contrasts with the earlier case v ¢ O, where the limiting
configuration (5.16) is reached.

The behavior in the present case corresponds to results from the theory
of propagation of singularities. In the latter case it is known that as the
frequencies tend to infinity, the corresponding portions of the solution
follow the bicharacteristic curves (sece (4.25)) better and better. In the
present case the directions of propagation lie along the boundary.

Up to now we have considered modes (5.14), exp (Kx + iw°y + st) which
are obtsined by perturbing purely oscillatory modes exp(iox + iw-y + ift).
Such modes correspond to (w,£) ¢ ' or points (o,w,£) on the plane
in Figure 4.1. However, there oxist modes (5.14) which do not fit this
description. These correspond to (w,f) in the exterior of I' , and for
Ro s = 0 they bave the form

(5.18) oSx + ety + 46t

One may object to labelling such modes as ‘‘incoming’’ or ’‘outgoing’’

according to whether Re K (0 or Re K > 0, since they do not correspond
to the oscillatory propagating waves mentioned sbove. BHowever, the U.K.C.
still requires that the boundary conditions prescribe the behavior of such

modes when Re K ( 0.

5.4 Yesk well-posedness

In this sub-section we discuss some weak forms of well-posedness which
can be encountered when the U.K.C. is not quite satisfied.

In Section 5.1 we considered the boundary condition (5.6),

N(w, 8)v1 = P(e,s)31T + §
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The U.K.C. (3.20) implies that this system is uniformly solvable for I

as lol + l¢l > © with n > 0 fixed (cf. Figure (5.1)). At the end

of Section 5.1 we remarked that the weaker necesssary condition (3.18),
det N(w,s) # 0 for Re s > 0, allows the possibility that det N(e,s)
may tend to zero as Re s > 0. In cases where this occurs, the left side
of (5.6) becomes singular as lul + ]l *» with ¢ > 0 fized, so that

vI could be large relative to QII

and § at large frequencies.
The incoming components would thus be less smooth than g and the other
components, i.e., we ''lose derivatives’'’ at the boundary. In enexgy
estimates like (3.5), derivatives of dsta would sppear on the right side.
Whether this phenomenon actually occurs depends on the structure of the
right side of (5.6). For example, it would not occur if § =0 and if
P(u.s);II stays within the range of N(w,s) in some suitable
senses. An appropriate characterization is that the ratios in Cramer’s rule
stay bounded as Re s > 0, However, the loss of derivatives must occur if
P(u,s);II moves out of the range of N(w,s) or if arbitrary g
are considered. The degree of the derivatives which are lost depends on the
order of the pole in Cramer’s rule. An example will be discussed at the end
of this sub-section. (See Proposition 5.3)
The above phenomena have 8 physical interpretation. Suppose g = 0, so
that the boundary condition (5.6) is a reflection condition, i.e., the

*’incoming’’ modes QI are reflections of the ’'’'outgoing’’ components

#11. The nature of the reflection is governed by the structure of the
bon;dury condition. When derivatives are lost, the amplitudes of the
reflected and incident waves have ratios which tend to infinity as le| +
lgl > . That is, the reflection coefficients tend to infinity. In the
other case mentioned above the reflection coefficients remain finite.

The loss of derivatives can cause particular difficulties when the
spatial region is s bounded domain rather than s half-space. In this case
waves can reflect back and forth between various portions of the boundary,
so that more and more derivatives are lost as time progresscs.

Trefethen [27], [29] has studied phenomena analogous to the above in
connection with the stability of finite difference approximations. He

emphasizes the distinction between the cases of finite and infinite
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reflection coefficients, and he describes how these affect the practical

nature of difference methods. In particular, he obtains growth rate
estimates for some mild forms of instability.
The case of weak well-posedness is somotimes associated with the term N

**goneralized eigenvalue’’. Recall the eigenvalue problem (3.12),

s

(a) sé(x) = A gg + (] ioij)‘ ;x>0
(5.19) () ¢X(0) = s¢11(0)
(c) ¢ ¢ L2(0,»)

If det N(w,s) = 0 for some (w,s) with Re s = 0, then a solution
& of (5.19)(a)(b) exists. However, it may fail to sstisfy the boundsry
condition at infinity, ¢ ¢ Lz(O.G). since the eigenvalues of
N(w,s) ocan be purely imaginary whem Re s = 0. (See Section 4.3) If
this is the case, then the valve s in (5.19)(a) is said to be o
*’generalized eigonvalue.’'’ The solution & does happen to be in
L2(0,») if (w,6) ¢« T and if & is associated with the
eigenvalue K of M(e,s) for which Rek < 0. (cf.(5.18))

We now describe some examples of weak well-posedness. We mainly
consider some examples which were discussed by Kreiss [11] from a point of

view which is different from the one expressed above. He studied the system

(5.20) 1o °o 1 o R2
. u, = u, + , us=s
t o 1) " |1 of% oI ¢
for x>0, ysR, t >0, with boundary conditions |
; (5.21) uI(O.y.t) = aull 4 sly.t).

Here a is a complex constant.

B A short calculation shows that the eigenvalues xk of M(w,s) satisfy
(5.22) k2 = 22 + &2
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For each determination of K , the corresponding eigenvector is (’ P l)T.
Let K, denote the value of K which bas positive real part, so that

Ko ocorresponds to the '’ jncoming’’ mode. It then follows that

i

1, -a) [ Ko

(5.23) N(w,s) =

(See the derivatiom of (5.6).) If N(w,s) = 0, then

2,
(5.24) s =i (“_2;'_;) ™

Kreiss discusses three cases where N(w,s) =0 for Re s = 0:
(1) a=311
(2) lal > 1, a real
(3) lal = 1, a not real
He constructs solutions via Laplace and Fourier transforms under the
assumption that the initial condition is wu(x,y,0) = 0. For case (1) khe
obtains the estimate

_{f g £. o~2%t |u(x,y.t) |2 4t ax dy
(5.25)
£
n

O O K (R P CR P

-

£

where ¢ is a constant. He also obtains an interior estimate for mu in
terms of g salone; in this case the spatial domain is given by x 2 & ) O,
y ¢e R, This estimate is possible because of the rapid decay in x of
the modes which cause trouble. In case (2) an estimate like (5.25) is
obtained, but is is not possible to obtain a stronger interior estimate. In
case (3) the situstion is the same ss for case (1),

In cases (1) and (2) the solutions & of (5.19)(a)(b) sre not in
LZ(O.O). Kreiss refers to the corresponding values of s as
*'generslized eigenvalues of the first kind’’ and ’'’second kind'’,
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respectively., Case (3) corresponds to genuine eigenvalues s.

Ve pow interpret the above results in terms of ideas which have been
developed in the present paper. A short calculation shows that the
characteristic variety of (5.20) is defined by gz - ol + o2,

i.e., its greph is like the one in Figure 4.1(a), except that the plane
is not present.

In case (1), N(w,s) = 0 when s = + ie, i.0., i = + io.

(See (5.24) and Figure 5.3) This means that K =0 and that (w,£) lies
on the edge of [, so that the modes in question correspond to tangenmtial
group velocity. The breakdown of the U.K.C. at such points means that the
boundary condition does not exert good control over tangential waves.
However, the effects of such modes are confined mainly to s neighborhood of
the boundary. It is therefore reasonable to expect that a weak estimate
like (5.25) would be obtained for x ) O but that s stronger estimste
should be possible for x 2 8 > 0.

The structure of the tangential wodes was described in Proposition 5.2.
For the case Re «k ¢ 0 ('’incoming’’) the modes decay rapidly away from the
boundary, and the rate of decay tends to infinity as lel + gl + =,

Kreiss observed this kind of behavior in the present example.

(a) (b) Cross-section

Figure 5.3. Locations of points where N(w,s) = 0 in cases (1),(2), and (3).

61

e SN SRR, P




PR

We now consider case (2), where lal > 1 with a real. Here
N(w,s) = 0 at points (w,s) = (w,i5) for which &l > lul. (See
(5.24) and Figure 5.3) 1In this case (w,£) 1lies in the imterior of T, . "

so that the U.K.C. breaks down for frequencies corresponding to

non-tangential group velocity. Because the modes in question can influence
the interior, one should not expect to recover a stronger estimate by
restricting attention to the proper subdomain x 2 & > 0. The structure
of the non-tangential modes was described in Proposition 5.1; as lel +
1€l *© with 3 > 0 fixed, these modes do not decay more and more
rapidly, but instead approach the limiting configuration (5.16).

In case (3) we have fal =1 with a oot resl. Here I&] < lul,
so that (w,f) lies outside I'. The corresponding modes are the
strictly decaying modes mentioned at the end of Section 5.2. (See (5.18))
For these modes, Re K # 0 eoven when Re s = 0. Arguments similar to
those used in Propositions 5.1 and 5.2 show that when ReK < O, the rate of
decay increases without bound as lel + |&] >~ o with n >0 fixed,
We omit the details. (Also see Kreiss [11]).) Thus, as in case (1), a weak
estimate like (5.25) is obtained .or x ) 0, and a stronger estimate is
possidble for x 2 & > O.

We now examine whether the boundary condition (5.21) for the system
(5.20) leads to bounded or unbounded reflection coefficients. For this

example the transformed boundary condition (5.6) has the form

e !

1,- AT —de _\ . :

( a) $ =Ky | v = -{(1, -a) s+, vII + 3 :

(5.26) . !
1 1 !

After a division and some simplification, (5.26) can be written as

W = RGe, 9T 4+ g,
where
iw(s - Ko) * auz
(5.27) R(w,s) = - %o

iu(s + Ko) + aw
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and N(w,s) is given in (5.23). In order to obtain (5.27) we used the

roelation (5.22), Kz = .2 + oz.

R{w,s) is the reflection coefficient which relates the ’‘incoming’’
and ’‘outgoing’’ components 31 and GII. This coefficient does
not play a role in the example as discussed by Kreiss in [11); in his
formulation no outgoing waves can be presonf. since u(x,y,0) = 0 and there

is no forcing term.

Proposjtion 5,3, Let (w,£) be a point such that N(w,if) = 0,
and let 3 =n + 45 . (v and £ are fixed.) In case (1), [R(w,s)]|
remains boonded as Re s 0. In cases (2) and (3), |R(w,s)| tends to

infinity.

Proof, As Re s >0, the denominator in R(e,s) tends to zero, since
N(w,s) > 0. Tbe only way that R(w,s) can remain bounded is for the
numerator also to tend to zero, Thus —iwkg = iwkg at the point
in question. Since o # 0 in cases (1),(2),(3) (cf. (5.25)), we have
Ko = 0. The relation k2 = 52 + w2 ((5.22)) implies s = + io,
which corresponds to case (1). Thus case (1) is the only circumstance
in which [R(w,s)| could remain bounded.

In this case, a=+1, For s =q + if =1 + ivw, R(u,s)

simplifies to

..Ko

n + kg

R(w,8) = -

According to remarks made prior to Proposition 5.2, Ko = c/q where
¢ is & constant., Thus R(w,s) > 1 as Re s > 0. This completes the

proof.

The first part of the above proof iilustrates the comment made earlier
about Plw,s) J1I remaining within the range of N(w,s).

Ve conclude by mentioning an example of weak well-posedness studied by
Ma jda and Osher [14, p. 628]. In this case the system of equations is
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Maxwell’s equations. (See (4.20)) For a class of boundary conditions which
includes the perfect conductor boundary condition, they find that the U.K.C,
fails at frequencies corresponding to tangential incidence. In their energy
estimate which is snalogous to (3.5), they have derivatives of the solution
and of g on the left and right sides, respectively. The derivatives are
taken with respect to y sand t.
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6. Remarks on proofs of well-posedness.,

We now describe some aspects of the process by which the U.K.C. (3.20)
is shown to imply that the IBVP (3.1),(3.3),(3.4) is well-posed. This
discussion is not self-contained; our purpose is to point to some features
of the existing literature and relate them to ideas developed in the present
paper.

The main step in the proofs of well-posedness is to produce an s priori
‘’energy estimate’’ like (3.5). Such an estimate immediately yields
uniqueness of solutions and continuous dependence of solutions on the
prescribed data f,F, and g. Existence of solutions is shown via methods of
functional analysis. (See, e.g., Section 3 of Majda and Osher [14])

The energy estimate is derived with the aid of a ‘’'symmetrizer’’'. This
is & pseudo-differential operator which has properties specified in, e.g..
Kreiss [10, p. 291] and Majds and Osher [14, p.639]. Once the symmetrizer
is constructed the enmergy estimate is obtained readily. (e.g., [10, p, 281],
(14, p.639])

For problems having constant coefficients, the symmetrizer may be
regarded as a smoothly varying matrix function R(w,s) which acts on the
transformed problem (4.2) discussed earlier. (Here w ¢ R®, Re s ) 0)

In the case of variable coefficients, one uses a corresponding
pseudo—differential operator. For simplicity, we use notation appropriate for
the former case.

We now make some comments about the construction of R(w,s). 1In
commerts (3) - (5) we consider systems whose characteristic variety has a
structure suggested by Figure 4.1, We will denote by (w’,s’) the scaled
variables

(w,s)

(lol2 + |s121/2

(w’,8') = (0',' + ig’') =
(See Figure 5.1).

(1) One first transforms M(w,s) to simple block forms by making
appropriste changes of dependent variable, as in (5.2), (5.3). (See later
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comments.) In this case the transformastions must be smooth functions of
(w.s), so that the calculus of pseundo-differential operators can be used.
One then constructs a symmetrizer for the simplified system, and at the end
the effects of the preliminary transformations sre incorporated into the
final symmetrizer. (No{e equation (4.5) in Majda and Osher [14] and the
equation after (4.8) in Kreiss [10]) The reduction to block forms receives
considerable attention in the theory (See Lemma 2.4 in [10), Assumption 1.9
in [14], e¢ad Appendix B of Majds [13]).

For different (w,s) one may need different block forms. The
construction is therefore done loos’ly, 1.e., one constructs R(w,s) in
conical neighborbhoods in the (w,s) space and then patches things together
vias & partition of uvnity. (See, o.g., equation (4.6) in [14])

(2) The construction is straightforward when n' ) n,', for
any fized 7.’ > 0. (See Section 4 of [10].) 1In this case the
process resembles a method for constructing Liaspunov functions for studying
the stability of nonlinear autonomous systems of ordinary differentisl
equations (e.g., John [8]). There thus remains only the situation where

n’ iz in a neighborhood of zero.

(3) If (w,£) 1is in the interior of I , and %' is near zero,
then M(w,s) can be disgonalized (in many cases). One can check that the
construction is very straightforward in such a sitvation.

VYhen 10’ = 0, the diagonalizability is given by Proposition 4.1 of
the present paper. We thus consider v’ # 0. For strictly hyperbolic
systems the eigenspaces !3 in Proposition 4.1 are all
one-dimensional, so that M(w,i{) has distinct eigenvalues. Locally, one
then has a complete set of eigenvectors which depend analytically on
parameters. (See Lemma 2.4 in [10]) Some more general cases are included
in the '’‘block structure’’ assumption (Assumption 1.9) of Wajda and Osher
[14].

(4) For (w,f) outside ' , M(w,if) bas eigenvalues «k for which
Re X # 0. (See Section 4.2 of the present paper.) These eigenvalues can
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be isolated into blocks and handled as in comment (2) above. The

eigenvalues of M(w,s) which are purely imaginary when Re s = 0 can be

treated as in comment (3).

(5) The main difficulty in the construction of R(w,s) occurs in
neighborhoods of points where (w,5) lies on the edge of ' and y = 0.
These points correspond to tangential group velocity. We noted in Section
4.3 that M(w,if) is defective in this case.

As before, M(w,s) is transformed smoothly to block form. The
doefective block (or blocks) is handled in a complicated manmer which is
described in Section 4 of Kreiss [10). The construction is also surveyed in
Appendix B of Majds [13]. In the case of the shallow water and Euler
equations there is s single defective block of dimension 2 x 2. One may

wish to follow Kreiss’ construction for the 2 x 2 case.

(6) During the course of the construction it is necessary to relste

the symmetrizer to the boundary conditions. This is the poinmt in the proof

where the U.K.C. is used; this sassumption enables one to solve for
'*incoming’’ (Re K < 0) components in terms of '‘outgoing’’' (Re x ) 0) '

components and the boundary dats g. (cf. Section 4 of Kreiss [10].)
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